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Instability and transition to turbulence in a magnetohydrodynamic channel flow are
studied numerically for the case of a uniform magnetic field imposed along the
spanwise direction. Optimal perturbations and their maximum amplifications over
finite time intervals are computed in the framework of the linear problem using an
iterative scheme based on direct and adjoint governing equations. It is shown that, at
sufficiently strong magnetic field, the maximum amplification is no longer provided
by classical streamwise rolls, but rather by rolls oriented at an oblique angle to the
basic flow direction. The angle grows with the Hartmann number Ha and reaches the
limit corresponding to purely spanwise rolls at Ha between 50 and 100 depending
on the Reynolds number. Direct numerical simulations are applied to investigate
the transition to turbulence at a single subcritical Reynolds number Re = 5000 and
various Hartmann numbers. The transition is caused by the transient growth and
subsequent breakdown of optimal perturbations, which take the form of one or two
symmetric optimal modes (streamwise, oblique or spanwise modes depending on Ha)
with low-amplitude three-dimensional noise added at the moment of strongest energy
amplification. A sufficiently strong magnetic field (Ha larger than approximately 30) is
found to completely suppress the instability. At smaller Hartmann numbers, the trans-
ition is observed but it is modified in comparison with the pure hydrodynamic case.

1. Introduction
In this paper we consider the transition to turbulence in a pressure-driven flow of

an electrically conducting fluid within a plane channel. The flow is affected by a steady
uniform magnetic field imposed in the spanwise (parallel to the wall and perpendicular
to the flow) direction. This flow can be viewed as an idealized model of flows in the
presence of a magnetic field with non-zero component parallel to solid walls. Such
flows can be found in numerous metallurgical and materials processing applications.
Prominent examples include the electromagnetic flow control in continuous steel
casting (Davidson 1999; Thomas & Zhang 2001) and in the growth of large silicon
crystals (von Ammon et al. 2005). Another area of applications is the liquid-metal
(Li or Pb-17Li) cooling blankets of breeder type for fusion reactors (Barleon et al.
2001). Typical blanket design includes a duct flow in a strong imposed magnetic field.
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Instability and transition to turbulence in sidewall boundary layers (with respect to
which the magnetic field is spanwise) is one of the possible ways to achieve the desired
intensification of heat and mass transfer. From a different application viewpoint, Lee
& Choi (2001) have shown that a spanwise magnetic field can lead to substantial
reduction of the turbulent drag in a channel flow.

We assume that the magnetic Reynolds number Rem ≡ ULσµ is small, where U and
L are the typical velocity and length scales, σ is the electric conductivity of the fluid,
and µ is the magnetic permittivity of vacuum. The assumption Rem � 1 is valid for
practically all industrial and laboratory flows of liquid metals and other electrically
conducting fluids including those mentioned above. It allows us to simplify the
problem significantly by justifying the use of the quasi-static approximation (Roberts
1967). The fluctuations of the magnetic field due to the fluid motion are much weaker
than the imposed magnetic field and can be assumed to adjust instantaneously to the
velocity fluctuations.

The general effect of the imposed magnetic field on a low-Rem flow can be identified
as two-fold (see, e.g., Moreau 1990; Davidson 2001). First is the flow suppression by
Joule dissipation of induced electric currents. The second effect is the introduction of
anisotropy due to the suppression acting preferentially on the flow modes with strong
gradients in the direction of the magnetic field. No electric currents are generated and
no Joule dissipation occurs in a two-dimensional flow uniform along the magnetic
field lines.

The anisotropic character of the Joule dissipation makes the case of a channel
in a spanwise field particularly interesting for the general theory of instability and
transition. While leaving the basic velocity profile unchanged, the magnetic field can
transform the evolution of stable or unstable perturbations and, more generally, the
properties of the transition. The applied magnetic field renders the spanwise direction
preferable in the sense that perturbations which are uniform in this direction are
not directly affected, in particular, not suppressed by the magnetic field. This results
in a different symmetry of the problem and, as demonstrated in our paper, in a
modification of the transition.

Among the possible transition scenarios, we focus on the one based on the algebraic
transient growth of optimal perturbations and their subsequent three-dimensional
breakdown. The scenario was shown to be pertinent in parallel shear flows, such as
boundary layers (Schmid & Henningson 2001), plane Poiseuille flow (Reddy et al.
1998) or pipe Poiseuille flow (Zikanov 1996). The underlying concept is that of
transient algebraic growth experienced by certain solutions of the linear perturbation
problem even far below the linear stability threshold. In the flows mentioned above,
the optimal perturbations have the form of two-dimensional streamwise rolls that
evolve into streamwise streaks via the lift-up mechanism. The amplification of the
strongest growing (optimal) perturbations can be sufficiently large that, considered
in the framework of the full nonlinear problem, the perturbations may result in the
modification of the basic flow rendering it temporarily unstable, either exponentially
or in a transient algebraic way, to three-dimensional perturbations. This secondary
instability, also referred to as streak breakdown, leads to turbulence.

The effect of an applied magnetic field on the transient growth and the breakdown
scenario has been analysed for the case of Hartmann flow (channel flow of an
electrically conducting fluid in the presence of a uniform magnetic field). Gerard-
Varet (2002) considered the purely streamwise optimal perturbations in the framework
of the linear model and the quasi-static approximation. The work was continued by
Airiau & Castets (2004), where the full magnetohydrodynamic (MHD) equations were
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solved and the effect of the magnetic Reynolds number was investigated. In addition,
Krasnov et al. (2004) conducted nonlinear simulations of the streak breakdown and
the subsequent transition. It should be stressed that the configuration considered in
the present paper differs from that of the Hartmann flow in a fundamental way. In
a Hartmann channel, the magnetic field affects the basic flow and the linear stability.
The transition based on the transient growth and three-dimensional breakdown is
affected by the magnetic field, but remains the same as in the non-magnetic case in its
principal aspects. In particular, the optimal modes retain their shape of streamwise
rolls evolving into streamwise streaks. In our case, the spanwise magnetic field does
not affect the basic flow or its linear instability to Tollmien–Schlichting waves. It does,
however, modify the transition caused by the transient growth. As will be shown in the
paper, the key feature of the modification is the preferential suppression of streamwise
modes, which allows oblique or even spanwise modes to become dominant modes of
the transition.

After formulating the problem in § 2, we analyse the transient evolution of linear
perturbations in § § 3 and 4. We use the adjoint procedure to determine the optimal
perturbations. It should be stressed that, owing to the effect of the spanwise magnetic
field, arbitrary three-dimensional perturbations should be considered. In § 5, the
nonlinear evolution of such optimal modes and transition to turbulence triggered
by superposition of one or two families of the symmetric optimal modes and three-
dimensional noise are investigated through direct numerical simulations (DNS).

2. Governing equations
Let us consider the flow of an incompressible electrically conducting fluid in an

infinite plane channel between insulating walls located at z = ± d/2, where x, y and z

denote the streamwise, spanwise and cross-stream directions, respectively. The flow is
driven by a pressure gradient ∂P0/∂x in the x-direction and subjected to a constant
spanwise magnetic field B0 = B0e, where e ≡ (0, 1, 0).

With the assumption of low magnetic Reynolds number, the governing equations
reduce to the Navier–Stokes system for the velocity v and pressure p with the
additional Lorentz force j × B0, where the induced electric current density is given
by the Ohm law

j = σ (−∇φ + v × B0). (2.1)

Neglecting displacement currents and assuming that the fluid is electrically neutral
we require that ∇ · j =0. This leads to an equation for the electric potential φ:

∇2φ = ∇ · (v × B0). (2.2)

The problem is solved in a rectangular domain with periodicity conditions used in
the x- and y-directions following the assumption of flow homogeneity. The no-slip
conditions are imposed at the walls. The electric potential φ is also periodic in the x-
and y-directions. Since no current flows through the electrically insulating walls and
the velocity v is zero at these walls, (2.1) leads to

∂φ

∂z
= 0 at z = ±d/2. (2.3)

It is important to stress that a uniform spanwise magnetic field does not affect the
basic Poiseuille flow or any other flow with velocity field independent of the spanwise
coordinate. This can be easily verified by taking curl of Ohm’s law (2.1), which leads
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to

∇ × j = σ (B0 · ∇)v = 0.

The only solution in the absence of externally imposed currents is j = 0. A spanwise-
uniform flow does not induce any currents and evolves in a purely hydrodynamic
manner.

The basic velocity field, thus, has the classical parabolic profile

UH (z) = U

(
1 − 4z2

d2

)
, U ≡ − d2

8νρ

∂P0

∂x
, (2.4)

with the basic pressure field PH (x) = (∂P0/∂x)x, the kinematic viscosity ν and the
density ρ. Finally, the basic potential field is

φH (z) = −d2B0

8νρ

∂P0

∂x

(
z − 4z3

3d2

)
. (2.5)

For the non-dimensionalization, the centreline velocity U of the Poiseuille flow is
used as the velocity scale. The characteristic length is taken to be the channel half-
width L ≡ d/2. The imposed magnetic field and the electric potential scale with B0 and
LUB0, respectively. Finally the units of time and pressure are taken as L/U and ρU 2.
The non-dimensional basic velocity profile is UH (z) = 1 − z2, and the non-dimensional
governing equations and boundary conditions become

∂v

∂t
− v × (∇ × v) = −∇

(
p + v2/2

)
+

1

Re
∇2v + N (−∇φ × e + (v × e) × e) , (2.6)

∇ · v = 0, (2.7)

∇2φ = ∇ · (v × e) , (2.8)

vx = vy = vz =
∂φ

∂z
= 0 at z = ±1. (2.9)

Two non-dimensional independent parameters can be defined, namely the Reynolds
number

Re =
UL

ν
= − d3

16ν2ρ

∂P0

∂x
, (2.10)

and either the Hartmann number

Ha =
d

2δ
, where δ =

1

B0

√
ρν

σ
, (2.11)

or the magnetic interaction parameter

N ≡ Ha2

Re
. (2.12)

Finally, integral conditions should be specified for the nonlinear evolution of
perturbations and transition to turbulence. We assume that the volume flux Qx per
span width is constant.

3. Linear evolution of optimal perturbations
Let us now split the flow fields into a basic flow and three-dimensional perturbations

as

v = UH (z)(1, 0, 0) + vp, φ = φH (z) + φp(x, y, z), p = PH (z) + pp. (3.1)
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We linearize the system with respect to the perturbations and consider the evolution
of decoupled monochromatic Fourier modes

(vp, φp, pp) = (û(z, t), v̂(z, t), ŵ(z, t), φ̂(z, t), p̂(z, t)) exp(iαx + iβy), (3.2)

where α and β are the wavenumbers in the streamwise (x) and spanwise (y) directions.
The evolution of such infinitesimal three-dimensional perturbations is governed by

the linear system[
∂

∂t
+ iαUH (z)

]
û +

∂UH

∂z
ŵ + iαp̂ − 1

Re

[
∂2

∂z2
− α2 − β2

]
û + Nû − N

∂φ̂

∂z
= 0, (3.3)

[
∂

∂t
+ iαUH (z)

]
v̂ + iβp̂ − 1

Re

[
∂2

∂z2
− α2 − β2

]
v̂ = 0, (3.4)

[
∂

∂t
+ iαUH (z)

]
ŵ +

∂p̂

∂z
− 1

Re

[
∂2

∂z2
− α2 − β2

]
ŵ + Nŵ + iαNφ̂ = 0, (3.5)

iαû + iβv̂ +
∂ŵ

∂z
= 0, (3.6)

[
∂2

∂z2
− α2 − β2

]
φ̂ + iαŵ − ∂û

∂z
= 0 (3.7)

with the boundary conditions

û = v̂ = ŵ = 0,
∂φ̂

∂z
= 0 at z = ±1. (3.8)

In this paper, we consider cases in which the flow is linearly stable, i.e. all
eigensolutions of (3.3)–(3.8) decay exponentially. It is known from previous studies
(see, e.g., Butler & Farrell 1992; Reddy et al. 1998) that, owing to the non-normality
of the linear operator, the eigenmodes may form combinations that experience
substantial transient algebraic growth before eventual decay. We focus on such
perturbations and consider their amplification with the idea, further analysed in § 5,
that transition to turbulence can be triggered by their nonlinear evolution. To quantify
the amplification at time T , it is customary to define a norm, which is typically the
kinetic energy of the perturbations. This norm can be orthogonally decomposed
on a Fourier basis in the x- and y-directions, which implies that the individual
contributions of each wavenumber pair (α, β) can be considered independently. We
follow such a procedure and define the norm

E(T ) ≡
∫

(û(z, T )û+(z, T ) + v̂(z, T )v̂+(z, T ) + ŵ(z, T )ŵ+(z, T )) dz (3.9)

where the superscript + denotes complex conjugation, spatial integration is performed
over the entire channel width, and the perturbations are obtained by time integration
of the above linear system over the time period [0, T ].

The amplification gain of any given mode at time T is the ratio E(T )/E(0). This
quantity can be maximized over all possible initial vertical shapes in (3.2) to give
the maximum amplification Ĝ(α, β, T , Ha, Re) at time T among the disturbances
with specific wavenumbers (α, β) and non-dimensional parameters Ha and Re. The
search for the disturbance providing the maximum amplification, the so-called optimal
disturbance, is the focus of the first part of our study. This problem can be solved using
a standard technique of modal stability analysis. There is, however, a more convenient
and efficient method (Farrell & Ioannou 1996; Andersson, Berggren & Henningson



78 D. Krasnov, M. Rossi, O. Zikanov and T. Boeck

1999; Luchini 2000; Schmid & Henningson 2001) that computes the maximum energy
gain through an optimization procedure. One determines the optimum of E(T )/E(0)
with two constraints: (i) the disturbance energy E(0) at time t = 0 is equal to unity;
(ii) the disturbance satisfies the linear governing equation as well as the boundary
conditions during the complete time interval [0, T ]. The solution can be obtained with
the help of a Lagrangian formalism in which Lagrangian multipliers are introduced
to enforce these constraints. In the present case, these multipliers are the adjoint
fields (ũ(z, t), ṽ(z, t), w̃(z, t), φ̃(z, t), p̃(z, t)). Following a standard derivation† of the
method, these quantities satisfy the adjoint equations:[

∂

∂τ
− iαUH (z)

]
ũ − 1

Re

[
∂2

∂z2
− α2 − β2

]
ũ + Nũ − iαp̃ +

∂φ̃

∂z
= 0, (3.10)

[
∂

∂τ
− iαUH (z)

]
ṽ − 1

Re

[
∂2

∂z2
− α2 − β2

]
ṽ − iβp̃ = 0, (3.11)

[
∂

∂τ
− iαUH (z)

]
w̃ − 1

Re

[
∂2

∂z2
− α2 − β2

]
w̃ − ∂p̃

∂z
+

∂UH

∂z
ũ + Nw̃ − iαφ̃ = 0, (3.12)

iαũ + iβṽ +
∂w̃

∂z
= 0, (3.13)

[
∂2

∂z2
− α2 − β2

]
φ̃ + N

∂ũ

∂z
− iαNw̃ = 0 (3.14)

with the boundary conditions

ũ = ṽ = w̃ = 0,
∂φ̃

∂z
= 0 at z = ±1. (3.15)

The symbol τ denotes τ ≡ −t . This relation means that the equations should be
solved backwards in time. One obtains the optimal perturbation for time T by using
an iterative scheme which propagates a given initial condition forward in time using
the direct problem, the result of which serves as an ‘initial’ condition for the backward
propagation by the adjoint equations. After one forward–backward integration an
updated initial condition for the next iterative step is available. Convergence is reached
when the initial condition for the forward problem does not change appreciably –
up to a normalization constant – by an appropriately chosen criterion from one
iterative step to the next. The maximum energy amplification Ĝ(α, β, T , Re, Ha) is
then obtained by propagating the converged initial condition forward in time and by
computing the ratio E(T )/E(0).

The direct and adjoint equations are solved numerically using a pseudospectral
method based on Chebyshev polynomials and a projection approach to enforce
incompressibility. The code is based on the one used by Schmid & Rossi (2004) and
has been adapted to the MHD channel flow.

4. Linear evolution results
In the pure hydrodynamic channel flow problem (Ha =0), the linear optimal

growth has been thoroughly investigated in the literature (see e.g. Butler & Farrell
1992). It has been found that, below the linear instability threshold, the maximum
transient amplification is achieved by streamwise vortices (α =0) evolving into

† Details are contained in an Appendix available with the online version of the paper.
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streamwise streaks due to the lift-up process, while purely spanwise two-dimensional
modes (β = 0) experience minor amplification via the Orr mechanism. Hereafter the
latter mode wil be referred to as the two-dimensional Orr mode or simply the Orr
mode.

In this section, we investigate how the transient growth changes in the presence
of a spanwise magnetic field. We first analyse the effect of magnetic field on the
streamwise vortices. Thereafter, the case of oblique modes of arbitrary orientation is
considered. A wide range of Hartmann numbers is investigated, while the Reynolds
number is kept at Re = 3000 or Re =5000, chosen as the values which are below the
instability threshold and have received close attention in the previous investigations
of the non-magnetic case.

The search for optimal perturbations is performed in a square (α, β)-domain (a
β-interval in the case of streamwise perturbations) with the wavenumbers varying
from 0 to 4. Our calculations have shown that this range is sufficient to determine the
global maximum, except for very small times T , when the amplification is low anyway.
It should be mentioned that, owing to the symmetries of the governing equations and
boundary conditions, only the quadrant with positive α and β need be considered.
The growth and amplification at symmetric (α, β) in other quadrants are identical.
The number of Chebyshev polynomials used in the vertical direction is 64; to ensure
that this is sufficient we have verified all the maxima with 128 polynomials, with
obtained differences being under 1 %.

The iterative method described in the previous section computes the maximum
energy amplification Ĝ(α, β, T , Re, Ha) which is provided by the optimal z-
dependence of a perturbation of specific α, β , T , Ha, Re. This function itself can be
maximized over α and β to provide M̂tot (T , Re, Ha) – the maximum amplification
among all the perturbations at given time T and flow parameters. This maximum
amplification M̂tot is reached at particular wavenumbers α and β depending on
the parameters (T , Re, Ha). Further maximization over time T provides the global
maximum amplification Mtot (Re, Ha) which is reached at time T = Topt (Re, Ha). The
corresponding optimal wavenumber pair is denoted by (αopt (Re, Ha), βopt (Re, Ha)).

For the purely streamwise perturbations, when the function Ĝ(α, β, T , Re, Ha) is
maximized over β keeping α =0, equivalent optimal quantities may be defined. They
are denoted by M̂stream(T , Re, Ha), Mstream(Re, Ha) and βstream(Re, Ha).

4.1. Streamwise perturbations

The results obtained for streamwise perturbations are summarized in figure 1.
The effect of the magnetic field is two-fold. First, the transient growth is strongly
suppressed by the imposed magnetic field (see figure 1a). The maximum amplification
Mstream(Re, Ha) decreases with Ha, so that no appreciable amplification is present at
Ha � 100. Second, the structure of optimal modes is affected. The principal pattern
of the evolution of the perturbations (streamwise vortices evolving into streamwise
streaks) remains the same as in the non-magnetic case. The spatial shape of the
optimal modes is, however, changed by the magnetic field. It is shown in figure 1(b)
and further illustrated in figure 2 that the spanwise wavenumber βstream(Re, Ha)
decreases with Ha. The optimal modes become increasingly elongated in the spanwise
direction according to the tendency of the imposed magnetic field to suppress the flow
gradients in its direction. By contrast, the wavenumber βstream depends only slightly
on the Reynolds number.
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Figure 1. Maximum amplification Mstream (Re,Ha) (a) and optimal βstream (Re,Ha) (b) as fun-
ctions of Hartmann number Ha for two subcritical Reynolds numbers Re= 3000 and 5000.

As Ha increases, βstream reaches the lower limit set by the grid resolution in β , equal
to the grid size ≈ 0.08. This occurs at Ha = 100 in our calculations. Since this mode
displays almost no amplification we do not refine the grid any further.

It is evident from figures 1(a, b) that the maximum amplification factor
Mstream(Re, Ha) and the corresponding optimal wavenumber βstream(Re, Ha) follow
power-law dependences on Ha in the range 5 <Ha < 100:

Mstream ≈ Ha−2, βstream ≈ Ha−1. (4.1)

Support (albeit not a proof) for this scaling law can be obtained from an asymptotic
analysis of the Orr–Sommerfeld and Squire equations in a way similar to that done
for the non-magnetic case (see e.g. Schmid & Henningson 2001). The linear stability
equations can be easily written in terms of the Fourier amplitudes of the vertical
vorticity component η̂ ≡ −iβû and vertical velocity component ŵ:

∂t η̂ − 1

Re
(D2 − β2)η̂ = iβŵDU − iβNDφ̂ − Nη̂, (4.2)[

∂t − 1

Re
(D2 − β2)

]
(D2 − β2)ŵ = β2Nŵ, (4.3)

(D2 − β2)φ̂ =
iDη̂

β
, (4.4)

where D denotes the partial derivative with respect to z. Let us now introduce scaled
variables

t ′ = t/Re, η′ = η̂/(βRe), w′ = ŵ, Φ ′ = φ̂/Re. (4.5)

With these scalings, one obtains

∂tη
′ − (D2 − β2)η′ = iw′DU − Ha2(iDΦ ′ + η′), (4.6)

[∂t − (D2 − β2)](D2 − β2)w′ = β2Ha2w′, (4.7)

(D2 − β2)Φ ′ = iDη′. (4.8)

Differentiating (4.6) and using (4.8), one obtains

∂tDη′ − (D2 − β2)Dη′ = iD(w′DU ) − iβ2Ha2Φ ′. (4.9)
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Figure 2. The streamwise-independent optimal perturbation which generates the maximum
amplification Mstream (Re,Ha) for Reynolds number Re= 5000 and Hartmann numbers Ha = 0
(a, b) and Ha = 10 (c, d). (a, c) Projections of the perturbation velocity fields on the (y, z)-plane
at the initial time t = 0. (b, d) Contours of streamwise velocity at time t = Topt , positive and
negative values are represented by solid and dotted lines respectively.

Equations (4.7) and (4.9) depend on only two parameters: β2 and β2Ha2. In terms of
the rescaled variables, the perturbation kinetic energy norm is now

E(t) ≡ 1

β2
(Ew′(t) + β2Re2Eη′(t)) (4.10)

with

Ew′(t) =

∫ 1

−1

(|Dw′|2 + β2|w′|2) dz and Eη′(t) =

∫ 1

−1

|η′|2 dz. (4.11)
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If we assume that the mechanism of ordinary hydrodynamics applies, in which the
growth is due to the forcing of normal vorticity by vertical velocity, the energy at
t = 0 is predominantly in the Ew′ term and at t = T – or, equivalently, t ′ = T/Re –
predominantly in the Eη′ term. This imposes that

Ĝ(0, β, T , Re, Ha) = β2Re2G

(
T

Re
, β2, β2Ha2

)
,

where G(t ′, β2, β2Ha2) is a function determined by an optimization problem: find the
optimum perturbation in w′, η′ satisfying (4.7) and (4.9) which maximizes the ratio

Eη′(t ′)

Ew′(0)
(4.12)

at t ′. Let us now assume that βstream tends asymptotically to zero as Ha grows. In that
case,

Ĝ(0, βstream, T , Re, Ha) = β2
streamRe2H

(
T

Re
, β2

streamHa2

)

where H (t ′, R) is a function determined by a simplified optimization problem: find the
optimum perturbation in w′, η′ satisfying equations depending on a unique coefficient
R:

∂tDη′ − D2Dη′ = iD(w′DU ) − iRΦ ′, (4.13)

[∂t − D2]D2w′ = Rw′, (4.14)

D2Φ ′ = iDη′, (4.15)

which maximizes the ratio (4.12) at t ′.
Let us assume that the function RH (t ′, R) possesses a maximum maximorum at

R =Rc and t ′ = t ′
c, which can be checked numerically. This is easily seen to imply the

following scaling:

Mstream(Re, Ha) =
Re2

Ha2
RcH (tc, Rc), (4.16)

βstream =

√
Rc

Ha
and Topt = Ret ′

c. (4.17)

In turn, this implies that the scaling (4.1) applies and that curves of the normalized
amplification factor

Ha2

Re2
Ĝ(0, βstream(Re, Ha), T , Re, Ha) (4.18)

plotted as a function of the normalized time T/Re for different Reynolds and
Hartmann numbers nearly collapse onto a single curve. Figure 3 shows that this is
observed in our calculations.

4.2. Perturbations of arbitrary orientation

Consideration of perturbations of arbitrary orientation reveals the main difference
between the magnetic and non-magnetic cases. At Hartmann numbers larger than a
low critical value (between 2 and 5 for both values of Re considered) the strongest
transient growth is provided by oblique perturbations with α �= 0. Typical behaviour of
the amplification factor Ĝ is illustrated in figures 4 and 5. Isolines of Ĝ(α, β, T , Re, Ha)
are shown as functions of α and β at different times T for Re = 5000 and two
Hartmann numbers Ha = 10 and Ha =50. Further information is provided in figure 6
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Figure 4. Isolines of energy amplification Ĝ(α, β, T , Re,Ha) in the (α,β)-plane for Reynolds
number Re= 5000 and Hartmann number Ha =10 and for two typical times T (see figure 6b).
(a) T = Topt ≈ 64, at which the global maximum is reached; (b) T ≈ 189, which corresponds to
the optimal time for purely streamwise perturbations.

that shows the maximum amplification M̂tot (T , Ha, Re) and the corresponding values
of α and β as functions of T . One can see in figure 6 that the ranges used for α and
β are inadequate at very small T . This is of little importance since the amplification
levels reached at such T are fairly low.

Data for the non-magnetic case Ha =0 repeat the classical results of Butler &
Farrell (1992) and are included in figure 6(a) for the sake of comparison. The optimal
perturbations are purely streamwise in this case. For Ha = 10, which represents the
cases of small and moderate Hartmann numbers, there is a single peak of the
amplification curve corresponding to an oblique mode at Topt (see figures 4 and
6b). For large times T (here T > 189), the streamwise perturbations dominate. It
should be stressed that the effect of the magnetic field on the spatial shape of
optimal perturbations is quite strong even at such a small Hartmann number. The
global maximum Mtot (Re, Ha) observed for an oblique mode at T ≈ 64 is about twice
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Figure 5. Isolines of energy amplification Ĝ(α, β, T , Re,Ha) in the (α,β)-plane for Reynolds
number Re= 5000 and Hartmann number Ha =50 and for typical times T (see figure 6c).
(a) T = Topt ≈ 15 at which the global maximum is reached, (b) T ≈ 28 which corresponds to
the appearance of two additional local peaks in the (α,β)-plane, (c) T ≈ 33 and (d) T ≈ 88
corresponding to the second and third local maxima of the amplification curve in figure 6(c).

the maximum amplification Mstream(Re, Ha) obtained at T ≈ 189 for the streamwise
modes.

The picture is more complex at higher Hartmann numbers as illustrated in figures 5
and 6(c) for Ha = 50. Again, streamwise modes dominate at large T , but the curve
of maximum amplification in figure 6(c) shows three discernible peaks corresponding
to the global maximum at Topt ≈ 15 and two local maxima at T ≈ 33 and T ≈ 88,
labelled (1), (2), (3). These peaks are associated with the dominance of oblique modes
with different streamwise and spanwise wavenumbers. This can also be seen in the
evolution of local maxima of the Ĝ distribution in the (α,β)-plane. An illustration is
given in figure 5, which shows the snap-shots corresponding to, respectively, (a) time
T = Topt when only one local maximum is present in the (α,β)-plane, (b) T ≈ 28 when
three co-existing local maxima are present, (c) T ≈ 33 when the local maxima have
been replaced by one global maximum, and (d) T ≈ 88 when a new local maximum
appears on the α-axis.

For the case of very strong magnetic fields illustrated by figure 6(d) for Ha = 100,
the maximum amplification is provided at any T by perturbations with β = 0. These
perturbations take the form of vortices with axes parallel to the magnetic field. Since
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these spanwise modes are unaffected by the magnetic field, their spatial shape and
evolution are necessarily identical to those of the spanwise perturbations produced
by the two-dimensional Orr mechanism in a purely hydrodynamic channel flow.

The effect of the magnetic field on the transient growth is summarized in figures 7
and 8. The orientation of the optimal wavenumber vector (αopt , βopt ) and the maximum
amplification factors Mtot and Mstream are shown as functions of Ha. These results
are presented for two Reynolds numbers: Re = 3000 and Re = 5000. No principal
differences are seen between the two cases. The largest amplification is found for
streamwise modes at very small Ha, for oblique modes in a wide range of moderate
to large Ha and for spanwise modes at very large Ha. At Re =5000, the range of Ha
where oblique modes dominate is larger than at Re =3000.

The oblique modes do not show any discernible scaling with Ha as it was the case
for the streamwise perturbations. The amplification factor becomes constant at high
Ha, when the dominant modes are purely spanwise modes unaffected by the magnetic
field.
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Figure 9. The optimal mode corresponding to the maximum amplification Mtot (Re,Ha) for
Re = 5000 and Ha = 10. Projections of the perturbation velocity field (a) and isolines of
streamwise velocity perturbation (b) are plotted on a vertical plane parallel to the optimal
wavevector (αopt , βopt ) at times t = 0 (left) and t = Topt (right).

The projections of the velocity fields and the iso-contours of the streamwise
perturbation velocity component upon the vertical plane parallel to the wavenumber
vector (αopt , βopt ) are presented in figure 9 for Ha = 10. The spatial structure of the
initial velocity field of the mode shares some characteristics with the Orr mode (see e.g.
Schmid & Henningson 2001), including inclined vortical structures near the walls. On
the other hand the optimal mode is clearly not equivalent to the Orr mode, because
of its oblique orientation, much stronger amplification and substantial streamwise
perturbation velocity component.

Based on a visual inspection of the velocity fields we conclude that the oblique
optimal modes cannot be classified as modifications of either Orr modes or classical
streamwise vortices. They bear features of both types, although a certain tendency
toward increased similarity with the Orr modes is observed as Ha grows. As an
example, figure 10 shows the structure of the global optimal mode at Ha =50 and
Re =5000. This mode provides the amplification Mtot ≈ 55, which is only slightly
higher than the value of 45.7 for the classical Orr mechanism amplification of purely
spanwise vortices at the same Re (Butler & Farrell 1992).

The transition between two limiting cases (i.e. purely streamwise and purely
spanwise vortices) with growing Ha is illustrated further in figures 11 and 12, which
present the vertical profiles of vertical velocity w and vorticity η of the dominant
modes for Ha = 0, 10, 50 and 100 at the initial time t = 0. For example, one can
clearly see in figure 11(c) that the structure of vertical velocity w for Ha = 50 closely
follows that of the two-dimensional Orr mode attained at Ha = 100 (see figure 11d).
At the same time, the vertical vorticity η is non-zero at Ha = 50 (see right-hand plots
in figures 11c and 11d) since the mode is not two-dimensional. The optimal mode
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Figure 10. The optimal mode corresponding to the maximum amplification Mtot (Re,Ha)
for Re= 5000 and Ha = 50. Projections of the perturbation vector field (a) and isolines of
streamwise velocity perturbation (b) are plotted on a vertical plane parallel to the optimal
wavevector (αopt , βopt ) at times t =0 (left) and t = Topt (right).

at Ha = 10 (figure 11b) differs from both the Orr mode (figure 11d) and the purely
streamwise mode (figure 11a). Comparing the profiles in figures 11(c) and 12(a, b) we
see that the oblique modes of different wavelengths, that serve as optimal at different
times for Ha =50, also differ significantly in their vertical structure.

A comment can be made regarding the role of oblique modes in the hydrodynamic
channel flow. They exist and and possess spatial characteristics similar to those
described above. They also experience transient growth, which is stronger than in
our magnetic case, but generally weaker than the growth of optimal streamwise
modes. Their role in the transition is likely to be indirect, for example via forming a
streamwise mode in nonlinear interaction as discussed in the next section.

5. Nonlinear evolution and transition to turbulence
At a subcritical Reynolds number, transient growth of initial perturbations may

result in a finite-amplitude modification of the basic velocity profile that is sufficiently
strong that the flow becomes unstable to three-dimensional noise. In our problem,
the transient growth can be produced by optimal perturbations of different types:
streamwise vortices, a single oblique mode, a pair of oblique modes, or spanwise
rolls. The same possibilities exist in the non-magnetic case (as discussed by Schmid
& Henningson 2001) except that the single oblique mode is never optimal in the
linear evolution. The oblique modes may play a role in the transitional behaviour of
non-magnetic flows via nonlinear interaction of (α, β) and (α, −β) modes, which can
lead to slightly faster transition than the optimal streamwise modes. The novelty of
our case is that the action of the magnetic field renders the oblique and spanwise
modes optimal at moderate and high Ha in the sense that they provide the strongest
amplification. As discussed below, this also leads to a more important role of the
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Figure 11. The structure of optimal perturbations at the initial state t = 0 shown in terms of
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Re = 5000 and Ha = 50 (see the corresponding maxima in figure 6c).

nonlinear interaction of (α, β) and (α, −β) modes, which becomes the most effective
mechanism of transition.

We explore the transition to turbulence triggered by the nonlinear evolution of the
optimal perturbations previously analysed in the linear context. The representative
flow regimes with Ha ranging between 10 and 100 are considered. The initial
conditions consist of the basic flow UH = 1 − z2 modulated by an optimal linear
mode of a specified amplitude. The amplitude is chosen so that the kinetic energy
of the perturbations E(0) varies between 10−5 and 10−2 relative to the energy
of the basic flow. For cases such as Ha =50, where different linear modes give
maximum amplifications at different times, simulations are conducted separately for
each such mode used as an initial condition. To trigger the transition, weak three-
dimensional noise is added to the modulated flow at the time t = Topt of maximum
linear amplification. The energy E3D of the noise is chosen to be 10−2 of the initial
optimal perturbation energy.

The time at which noise is added can, in principle, be considered as another
parameter of the problem since it determines the starting moment and duration
of the period during which the secondary instability can evolve. The effect was
investigated earlier, for example, by Krasnov et al. (2004) for the case of Hartmann
flow. It was found that adding the noise before Topt can lead to earlier development of
turbulence but no noticeable modification of the process of transition itself. Similar
results were obtained in our computations of the flow with spanwise magnetic field. It
is important to note that, unless unrealistically strong three-dimensional perturbations
are added, the transition always occurs at t > Topt . The evolution of the modulated
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Figure 13. The nonlinear evolution of energy E(t) at Re= 5000 and Ha = 0. The initial
energy of the streamwise optimal mode varies from E(0) = 10−5 to E(0) = 10−2. (a) No
three-dimensional noise is added, (b) noise of energy E3D = 10−2E(0) is added at t = Topt .

flow remains largely unaffected by the noise until some time after Topt . Our choice
of Topt as the time at which noise is added seems, therefore, pertinent. The effect of
three-dimensional perturbations existing in the flow at earlier times is, to some degree,
modelled by variation of the noise amplitude.

We numerically simulate the full equations (2.6)–(2.9) using a pseudospectral
algorithm and a representation of the flow field in terms of velocity potentials
complying with the incompressibility constraint. A detailed description of the method
is given in the Appendix.

All simulations are performed with a numerical resolution of 1283 collocation points
in the x-, y- and z-directions. The periodicity lengths are specified as Lx = 2π/αopt and
Ly = 2π/βopt , where αopt and βopt stand for the optimal wavenumbers found in the
linear problem. In case of αopt or βopt equal to 0, i.e. purely spanwise or streamwise
perturbations, the corresponding periodicity length is set to 2π.

5.1. Transition caused by streamwise and oblique modes

In this section we analyse the transition to turbulence caused by growing oblique
and streamwise modes. Special attention is given to the efficiency of these modes in
generating the transition. The spanwise modes are discussed in § 5.2 as a separate
case.

In the case of oblique rolls, the symmetry of the problem provides a new interesting
opportunity. The modes with wavenumbers (α, β) and (α, −β) are equivalent solutions
of the linearized equations (3.3)–(3.8) with the ansatz (3.2) up to the substitution
v̂ → −v̂ and have, thus, the same linear transient growth. Their nonlinear interaction
might lead to faster transition to turbulence than in the case when only one set of
rolls is used. In order to test this possibility, simulations are conducted for different
types of initial conditions: a single roll or a superposition of symmetric oblique rolls
of equal or different amplitudes.

In the hydrodynamic limit Ha = 0, the linear analysis gives the maximum linear
amplification Mtot (Re = 5000, 0) ≈ 4897 for the purely streamwise vortices with
(αopt , βopt ) = (0, 2.04) and 45.7 for the Orr mode with α = 1.48 (Butler & Farrell
1992). The nonlinear evolution of the streamwise modes is displayed in figure 13,
indicating that a perturbation energy of streamwise vortices of E(0) = 10−5 and the
noise energy E3D = 10−2E(0) is sufficient to trigger the transition.
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Figure 14. The nonlinear evolution of perturbation energy E(t) at Re= 5000: (a) Ha = 10
starting with the streamwise optimal mode, (b) Ha = 10 starting with a single optimal oblique
mode, (c) Ha = 10 starting with a superposition of two symmetric oblique modes (α,β) and
(α,−β) of equal amplitudes, (d) Ha = 30 starting with two symmetric oblique modes of
equal amplitude. Initial energy of optimal modes varies from E(0) = 10−5 to E(0) = 10−2, the
three-dimensional noise of energy E3D = 10−2E(0) is added at t = Topt in cases (a) and (b). For
the initial conditions with two symmetric oblique modes, adding three-dimensional noise is
unnecessary (see text).

For Ha = 10, the linear analysis gives the maximum amplification Mtot ≈ 900 for
the oblique modes and Mstream ≈ 450 (at larger T ) for the streamwise modes (see
figure 6b). The corresponding results of direct numerical simulations displayed in
figure 14 demonstrate that even at such a modest Hartmann number there is already
a significant effect of the magnetic field upon the streamwise vortices. As can be
seen in figure 14(a), a perturbation energy larger than or equal to 10−3 is necessary
to induce transition to turbulence. This should be compared with the case Ha =0,
where E(0) = 10−5 is sufficient. The nonlinear evolution of an oblique optimal mode
is similar, except that it is a far better candidate to modulate the flow and trigger the
transition. Even an initial energy as small as E(0) = 10−5 is sufficient for the transition
when three-dimensional noise is added (see figure 14b). The transition itself seems to
occur earlier than in the case of streamwise vortices. For both streamwise and oblique
modes, the flow remains laminar and returns to the basic state if no three-dimensional
noise is present, in agreement with the transient character of their growth.

Analysing the flow evolution caused by two superimposed oblique waves with
(α,β) and (α,−β) (see figure 14c) we found transition to turbulence for all E(0) in
a range from 10−5 to 10−2. The major difference with the one-wave case is that no
three-dimensional noise has to be added. Each of the modes plays the role of a
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Figure 15. Instability and transition to turbulence at Re = 5000 and Ha = 10 triggered by a
superposition of (α, β) and (α, −β) optimal perturbations of equal amplitude. Four stages
of the evolution are visualized by the isosurfaces of the streamwise velocity perturbations:
(a) initial state, (b) t ≈ 0.33Topt , (c) t ≈ 1.27Topt , (d) t ≈ 1.42Topt . The isosurfaces correspond to
±45% and ±90 % levels of the maximum amplitude.

secondary perturbation for the other. Nonlinear interaction leads to excitation of the
horizontal Fourier harmonics other than the initial two modes. The flow becomes
essentially three-dimensional at the early nonlinear stages of the transition. This is
illustrated in figure 15, which shows a series of intermediate stages including the initial
state, interaction between the two initial oblique modes, breakdown of the growing
structures, and, finally, a state preceeding turbulent flow.

In order to further investigate which kind of initial condition is more efficient in
triggering the transition, we conducted simulations at Ha = 10 and Re = 5000 using
one oblique mode or two modes of equal or significantly different amplitudes (in the
latter case, one amplitude was 10 % of the other). No appreciable differences were
found in the characteristics of the developed turbulent state and in the amplitude of
perturbations needed to initiate the transition. Some variations were observed in the
behaviour during the nonlinear phase of the transient growth. As illustrated in figure
16, the 2-mode solution demonstrates somewhat stronger amplification (approximately
a 10 % larger amplification factor G) than the two other solutions. An explanation
is also provided in figure 16. The nonlinear interaction between the growing oblique
modes (α, β) and (α, −β) results in the activation of the Orr mode (2α, 0). One can see
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Figure 16. The amplification factor Ĝ of the perturbation energy E(t) at Re= 5000 and
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E(0) = 10−3 in all cases.

that the modest transient growth experienced by this mode accounts almost entirely
for the enhanced amplification of the 2-mode solution.

No transition to turbulence was detected at Ha =30 and at higher Hartmann
numbers (see figure 14d). We have checked this for all families of optimal linear
modes, each providing the maximum amplification in a certain time range and every
method of flow excitation (single mode plus three-dimensional noise, superposition
of symmetric oblique modes and, additionally, superposition of symmetric oblique
modes plus three-dimensional noise). The nonlinear effects become noticeable when
the initial perturbation energy exceeds 10−3 but the transition to turbulence is never
triggered. The possible explanation is two-fold. First, the maximum transient energy
amplification is weak (for example, only Mtot ≈ 55 for Ha = 50). Furthermore, the
Joule dissipation strongly suppresses the three-dimensional perturbations once they
are introduced. To conclude this part of the study, we have conducted a series of
simulations for Ha = 30 and 50 aimed at investigating the possible effect of the size
of computational domain on the observed transition. In particular, we wanted to
see whether the absence of transition at high Ha is an artefact due to the use of
the domain that includes only one wavelength of the optimal mode in the x- and
y-directions. The domain was enlarged by factor of 2 in both directions. The number
of Fourier modes was doubled as well to maintain the same grid spacing. We have
found no major difference with the results obtained in the smaller domain. As an
illustration, perturbation energy values calculated in the large domain at Ha = 30 are
shown in figure 14(d).

5.2. Transition caused by Orr modes

At high Hartmann numbers, the transient amplification provided by the Orr modes
is comparable to or even stronger (at Ha � 100, see figure 7) than the amplification
by the oblique and streamwise modes. It is tempting to consider the Orr modes
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Figure 17. The nonlinear evolution of perturbation energy E(t) starting with an Orr mode
at Re= 5000 and different Ha. (a) Ha = 100, the early stage (t � 400) with initial energy
E(0) = 10−5 . . . 10−2 and three-dimensional noise of energy E3D =10−2E(0) added at
t = Topt for the solid curves. (b) Case Ha = 100, the complete evolution (t � 1600) up to a

sustained two-dimensional finite-amplitude state for E(0) = 10−2 and 10−3, three-dimensional
noise of energy E3D =10−2E(0) is added at t = Topt for the solid curves. (c) Transition for

0 � Ha � 30 and an initial Orr mode of energy E(0) = 10−3, three-dimensional noise of energy
E3D =10−2E(0) is added at t = Topt . (d) Instability of the sustained two-dimensional state and

transient evolutions for 0 � Ha � 100, three-dimensonal noise of amplitude E3D = 10−7E2Dstate

is added at T ≈ 1500. Curves at Ha = 0, 20, 30, 100 are presented.

unaffected by the magnetic field as a possible route to turbulence. Their nonlinear
growth and saturation at Reynolds numbers as high as Re = 5000 can modify the
basic flow to a degree sufficient to make it unstable to three-dimensional noise. On
the other hand, the three-dimensional evolution would be strongly suppressed by the
magnetic field.

We conducted numerical experiments at Ha = 100. The dominant optimal mode,
which is an Orr mode in this case, takes the form of purely spanwise vortices (see
figure 6d). Sufficiently strong initial perturbations (e.g. E(0) � 10−3 in figure 17(a, b)
evolve into a purely two-dimensional finite-amplitude state characterized by
oscillations observed earlier by Jimenez (1990) in a two-dimensional non-magnetic
channel flow. This evolution can be regarded as a common solution for all values of
Ha, including the non-magnetic case. If three-dimensional noise is added at t = Topt

in the non-magnetic case (see figure 17c), the transition to a three-dimensional
turbulent state is triggered. On the contrary, the noise destroys the time-dependent
two-dimensional flow for Ha = 100 in such a way that it returns to the basic flow
regime as illustrated in figure 17(a, b) (solid curves) and figure 18. We attribute this
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Figure 18. Instability and return to the base state at Re = 5000 and Ha = 100. The simulation
is started with the Orr mode as initial condition and three-dimensional noise added at the
time of maximum growth. Four stages of the evolution are visualized by the isosurfaces of the
streamwise velocity perturbations: (a) initial state, (b) t ≈ 10Topt , (c) t ≈ 15Topt , (d) t ≈ 18Topt .
The isosurfaces correspond to ±30%, ±60% and ±90 % levels of the maximum amplitude.

re-laminarization to energy transfer by nonlinear interactions from the two-
dimensional modes to three-dimensional modes with a finite spanwise wavenumber,
which are rapidly damped by the Joule dissipation. We varied the amplitude
E3D and found that even very small noise with E3D = 10−20E(0) (comparable
with the round-off error of floating-point operations) is sufficient to trigger the
re-laminarization.

Similar simulations were conducted in the entire range 0 � Ha � 100. A re-
laminarization similar to that for Ha = 100 was found at Ha � 30 (see figure 17c, d).
Transition to turbulence was found at lower Ha (e.g. at Ha =10 and 20). At such
Hartmann numbers, transition was also produced by the oblique modes. We can
conclude that, although the Orr modes are capable of producing transition to
turbulence in the presence of the magnetic field, they are unlikely to play the role of
the sole route to turbulence at high Ha.

One has to be careful drawing conclusions based on the results of simulations
conducted with a computational domain of finite length (Ly = 2π in our case). It is
possible that the maximum Hartmann number, at which the transition can occur, is
higher if longer (thus, not so strongly magnetically suppressed) spanwise waves are
included. To address this issue we have conducted several additional simulations for
Ha = 30, 100 in a domain with doubled spanwise length Ly as well as the number of
modes Ny in the spanwise direction. One of these runs performed for Ha = 30 and
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initial energy of the Orr mode E(0) = 10−3 is shown in figure 17(c). One can see that
the flow still returns to the laminar state, although the evolution of the perturbation
energy differs slightly from that observed in a smaller computational domain. The
results indicate that doubling the spanwise wavelength does not significantly affect
the transition. Different behaviour is possible at larger wavelengths, which deserves a
separate investigation.

Another interesting aspect of the results obtained at Ha = 100 is related to whether
purely two-dimensional turbulence can be sustained by a strong imposed magnetic
field. One possible way forward is to question whether the two-dimensional states are
stable to three-dimensional perturbations in the presence of the magnetic field and, if
unstable, towards which flow regime they evolve. We do not attempt to fully resolve
this intricate and important question but rather provide a counter-example. Two
simulations (with E(0) = 10−3 and E(0) = 10−2) were continued as two-dimensional
until the non-steady saturated two-dimensional solutions similar to those found
by Jimenez (1990) were obtained (see figure 17b). Adding three-dimensional noise at
this stage led to the instability of the two-dimensional structures (curves for Ha =30
and 100 in figure 17d) and quick energy drain into three-dimensional perturbations,
which were then suppressed by the magnetic field. The flow evolved back to the
basic state. Interestingly, this happened more slowly in the case of higher Hartmann
number (Ha =100). The stronger magnetic field slowed down the growth of the three-
dimensional perturbations, and thereby delayed the nonlinear interaction and energy
transfer from two-dimensional to three-dimensional structures.

As a general conclusion we state that whereas a sufficiently strong magnetic field
eventually suppresses any three-dimensionality in the flow, it cannot sustain the
non-steady two-dimensional solutions found by Jimenez (1990).

6. Conclusions
In this paper, we investigate the change of stability properties and the transition to

turbulence in a plane channel flow of an electrically conducting fluid in the presence
of a uniform constant magnetic field in the spanwise direction. The case of small
magnetic Reynolds number is considered. The scenario of transition based on the
transient growth of certain perturbations and subsequent secondary instability of the
modified base flow was analysed using linear and nonlinear computational models. In
the linear part, conducted for subcritical values of the Reynolds number Re = 3000
and Re = 5000, the optimal (with strongest transient growth) perturbations were
determined with the help of the iterative procedure based on integration of direct and
adjoint equations. The nonlinear evolution of the optimal modes, their breakdown, and
transition to turbulence were investigated in a series of direct numerical simulations
for Re = 5000.

We found that the magnetic field has strong quantitative and qualitative effects on
the transient growth. By means of added Joule dissipation, it reduces the growth of all
perturbations except purely spanwise modes. For the streamwise rolls that appear as
optimal perturbations in the classical hydrodynamic flow, the suppression is described
by power-law dependences with the energy amplification and spanwise wavenumber
of the strongest growing mode scaling as Ha−2 and Ha−1, respectively.

More interestingly, the preferential suppression of the spanwise velocity gradients
by the magnetic field leads to the fact that the orientation of the optimal modes
changes under the impact of the magnetic field. At Hartmann numbers above a
moderate threshold value (between 2 and 5, depending on the Reynolds number), the
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optimal perturbations change from streamwise to oblique rolls. Their oblique angle
increases monotonically with Ha, demonstrating the shifting balance between the two
opposing energy fluxes: the Joule dissipation and the energy transfer from the basic
flow, both of which decrease with the growing oblique angle. At sufficiently strong
magnetic field characterized by Ha larger than a threshold between 50 and 100, the
strongest (and quite moderate) growth is supplied by purely spanwise Orr modes
unaffected by the magnetic field.

In the nonlinear analysis we first focused on the transition to turbulence caused
by the breakdown of growing streamwise or oblique modes at Hartmann numbers
in the range 5 � Ha � 50. Numerical experiments were conducted, in which linear
optimal modes of low amplitude were used as initial conditions and weak three-
dimensional noise was added to trigger the secondary instability. It was found that
stronger optimal growth of the oblique modes renders them better candidates for the
dominant mechanism of the transition. For example, at Ha =10 and Re= 5000, an
initial energy not less than 10−3 of the energy of the base flow is required by the
streamwise modes to initiate the transition, while energy levels as small as 10−5 are
sufficient for the oblique modes.

The oblique orientation of the optimal modes at moderate Ha opens an interesting
possibility of simultaneous growth of two superimposed symmetric modes, (α, β) and
(α, −β). We found that these modes efficiently serve as secondary disturbances for each
other so there is no need to add noise to trigger the transition. Nonlinear interaction
between the symmetric modes generates other modes experiencing transient growth.
In particular, the spanwise mode (2α, 0) was shown to provide approximately a 10 %
increase of the total energy amplification of the perturbations.

In the case of strong magnetic fields at Ha about 100 and higher, the spanwise
perturbations are the only ones experiencing noticeable transient growth. We found
that these modes are unable to generate the transition to turbulence at high Ha. Their
growth and nonlinear saturation lead to establishment of a spanwise-independent
secondary flow observed earlier in the two-dimensional simulations of Jimenez (1990).
Instability of this flow to three-dimensional perturbations cannot be suppressed by
the magnetic field in the range of Ha considered in the present paper. The instability
leads to the transition back into the base state. Further investigations are needed to
resolve interesting related questions, such as that of stability of the two-dimensional
solutions at even higher Ha and the role played by the spanwise Orr modes in the
transition at supercritical Re.

We would like to comment on the relative importance of lift-up and Orr growth
(transient or exponential) mechanisms in the presence of the spanwise magnetic
field. The fact that optimal oblique and streamwise modes are damped, while the
spanwise Orr modes are not affected, diminishes the possible role played by the
lift-up mechanism. On the other hand, we found that the mechanism is active at
small and moderate Ha, generating transition at subcritical Reynolds number. At
higher Ha, the primary role is played by purely spanwise perturbations growing either
transiently or exponentially. One has to take into account, however, that the evolution
of such perturbations is unaffected by the magnetic field only as long as they stay
two-dimensional. Any development into a three-dimensional turbulent flow would be
strongly suppressed by the magnetic field.
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Appendix. Method of direct numerical simulations
Equations (2.6)–(2.9) are solved using a pseudospectral method based on Fourier

series in x and y and a Chebyshev polynomial expansion in z (Canuto et al. 1988;
Gottlieb & Orszag 1977). The solenoidal velocity field is represented through the
poloidal–toroidal decomposition as

v(x, y, z, t) = ∇ × (∇ × ezϕ(x, y, z, t)) + ∇ × (ezψ(x, y, z, t)) . (A1)

Equations for the scalar fields ϕ and ψ are derived by taking respectively the curl and
twice the curl of the momentum equation and projection onto the vertical direction.
We obtain equations for the vertical velocity vz = − �hϕ and the vertical vorticity
ωz = −�hψ , where �h = ∂2

x +∂2
y and ω = ∇ × v is the vorticity. The quantities vz and ωz

determine the velocity field up to a mean flow U (z, t)ex+V (z, t)ey . Equations for U and
V are obtained by averaging the momentum equation over horizontal cross-sections
of the periodicity domain. The evolution equations based on the poloidal–toroidal
representation take the form

∇2ωz − Re ∂tωz = F, (A2)

∇2η − Re ∂tη = G, (A3)

∇2vz = η, (A4)

∇2φ = ∇ · (v × e) , (A5)

∂2
z U − Re N (e · ez)

2 U − Re ∂tU = Re [∂z 〈vxvz〉 + PX + N (e · ez) ΦY ], (A6)

∂2
z V − Re N (e · ez)

2 V − Re ∂tV = Re [∂z 〈vyvz〉 + PY − N (e · ez) ΦX]. (A7)

The angular brackets 〈〉 denote horizontal averages. The mean-flow equations also
contain the mean gradients of pressure and electric potential in x and y, namely PX ,
PY and ΦX , ΦY . The symbols F and G are given by

F = −Re ez · [∇ × (v × ω) + N (e · ∇) (−∇φ + v × e)] , (A8)

G = Re[∂z∇ · (v × ω) − ez · ∇2 (v × ω) + N (e · ∇)2 vz], (A9)

i.e. they originate from the nonlinear and Lorentz force terms. The boundary
conditions at the channel walls are readily derived using ∇ · v = 0. We have

vz = ωz = ∂zφ = ∂zvz = U = V = 0, (A10)

where ∂z vz = 0 represents the boundary condition for the η-equation (A3).
For the time discretization of the evolution equations we use a method of second-

order accuracy. If we write each equation symbolically as

∂tf = Lf + N(f ), (A11)



100 D. Krasnov, M. Rossi, O. Zikanov and T. Boeck

where L denotes a linear operator and N the remaining terms, our time-stepping
scheme

3f n+1 − 4f n + f n−1

2�t
= Lf n+1 + 2N(f n) − N(f n−1), (A12)

where �t is the time step. The left hand side approximates ∂tf at the time level n + 1
using the previous two time levels. The linear term Lf is treated implicitly, and N
explicitly through the second-order Adams–Bashforth method, where the prefactors
correspond to a linear extrapolation to the time level n + 1. The first step from n= 0
to n= 1 is calculated with the Euler method.

The derivation of the discrete representation of (A2)–(A5) and for the mean-flow
components (A6), (A7) proceeds in the same way as in Krasnov et al. (2004). We
note that ΦX , ΦY and PY have been set to zero. The driving pressure gradient PX is
adjusted at each time level such that the mass flux

Qx =

∫ 1

−1

U (z) dz (A13)

remains at a constant prescribed value. Details of the numerical algorithm and its
parallelization are also discussed in Krasnov et al. (2004).

The flow solver has been verified for several test cases. First, we have reproduced
the turbulent channel flow of Kim, Moin & Moser (1987) and Mansour, Kim & Moin
(1988) with the Reynolds number based on the wall shear velocity Reτ ≈ 180 (corres-
ponding to Re ≈ 3300 in the turbulent state) at a numerical resolution of 256 colloc-
ation points in all directions. Mean velocity profile, r.m.s. values of velocity perturba-
tions, stress tensor components and dissipation rates of turbulent kinetic energy show
perfect agreement with the results from Kim et al. (1987) and Mansour et al. (1988).

Secondly, we have conducted a cross-verification between linear and DNS solvers
for Hartmann flow, i.e. with a wall-normal magnetic field. The results for transient
growth of linear optimal perturbations by Gerard-Varet (2002) were reproduced with
both codes for Ha = 20 with Re/Ha = 200, 500 and 1000 at the optimal wavenumber
β = 1.0. To achieve a linear regime with the DNS solver, the initial amplitude of
optimal perturbations was chosen such that E(0) = 10−9. Another cross-verification
was carried out for e = (

√
0.5, 0.5, 0.5). We measured the energy amplification Ĝ at

times T =3.3 and 5.0 for Re = 5000, Ha = 20 and wavenumbers (α, β) = (1, 2). The
initial perturbation energy was E(0) = 10−9 as in the previous case. The linear and
DNS solvers yielded values Ĝ =11.1 vs. 11.09 at T =3.3 and Ĝ= 4.87 vs. 4.868 at
T = 5.0 correspondingly, demonstrating good agreement between the two methods.
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